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Abstract

Undoubtedly, customer relationship management has gained its importance through the statement that acquiring a

new customer is several times more costly than retaining and selling additional products to existing customers. Con-

sequently, marketing practitioners are currently often focusing on retaining customers for as long as possible. However,

recent findings in relationship marketing literature have shown that large differences exist within the group of long-life

customers in terms of spending and spending evolution. Therefore, this paper focuses on introducing a measure of a

customer�s future spending evolution that might improve relationship marketing decision making. In this study, from a

marketing point of view, we focus on predicting whether a newly acquired customer will increase or decrease his/her

future spending from initial purchase information. This is essentially a classification task. The main contribution of this

study lies in comparing and evaluating several Bayesian network classifiers with statistical and other artificial intelli-

gence techniques for the purpose of classifying customers in the binary classification problem at hand. Certain Bayesian

network classifiers have been recently proposed in the artificial intelligence literature as probabilistic white-box clas-

sifiers which allow to give a clear insight into the relationships between the variables of the domain under study. We

discuss and evaluate several types of Bayesian network classifiers and their corresponding structure learning algorithms.

We contribute to the literature by providing experimental evidence that: (1) Bayesian network classifiers offer an in-

teresting and viable alternative for our customer lifecycle slope estimation problem; (2) the Markov Blanket concept

allows for a natural form of attribute selection that was very effective for the application at hand; (3) the sign of the

slope can be predicted with a powerful and parsimonious general, unrestricted Bayesian network classifier; (4) a set of

three variables measuring the volume of initial purchases and the degree to which customers originally buy in different

categories, are powerful predictors for estimating the sign of the slope, and might therefore provide desirable additional

information for relationship marketing decision making.
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1. Introduction

Undoubtedly, customer relationship manage-

ment (CRM) has gained its importance through

the statement that acquiring a new customer is

several times more costly than retaining and selling

additional products to existing customers [2,20,46].

This simple rule-of-thumb has led to what many

authors refer to as �the paradigm shift in market-

ing� [4,25], implying that brand strategies are being
replaced by customer strategies [3], and more and

more voices rise to replace the traditional brand

managers by customer (segment) managers [37,47].

Hence, it has become increasingly important to

make informed marketing decisions on a customer

level, and the customer loyalty of individual con-

sumers has rapidly grown to become the focal

point of relationship marketing (see, e.g., [22,31,
40,41]).

In order to ensure the success of a CRM strat-

egy, it is crucial that customers remain, at least to

a certain extent, loyal to the company in case.

However, recent research suggests large heteroge-

neity in terms of spending and spending evolution

within the group of long-life customers [44]. Re-

sponding to this finding, in the following section of
the paper, we elaborate upon the relevance of an

accurate indication of a customer�s future spend-

ing evolution for improving relationship market-

ing decision making for long-life customers.

Consequently, we try to account for the hetero-

geneity within the group of long-life customers by

adding information about estimated future

spending evolutions.
In this study, we limit the focus to estimating

whether newly acquired customers will increase or

decrease their future spending. Whereas, to the

best of our knowledge, no published study has

attempted to forecast this variable, we argue in

the following section that the recently evolving

literature around the loyalty issue has motivated

us to do so. To this end, we will use and compare
different recently developed classification tech-

niques for optimally classifying the customers into
the two relevant groups (i.e. customers with de-

creasing versus increasing spending). We hereby
focus on techniques that besides yielding good

classification accuracy also represent the marginal

and conditional independence relations between

the variables and how they jointly affect the classifi-

cation decision.

In recent artificial intelligence literature, Bayes-

ian networks have been suggested as probabilistic

white-box models that are able to capture even
higher-order dependencies between sets of vari-

ables. These networks can then also be efficiently

adopted for classification purposes. In this paper,

we will evaluate and compare several Bayesian

network classifiers for the purpose of classifying

customers in the binary classification problem at

hand. Using the Naive Bayes classifier as a point of

origin, we will gradually remove the restrictions
put on the network structure and investigate Tree

Augmented Naive Bayes classifiers (TANs) fol-

lowed by completely unrestricted Bayesian net-

work classifiers. Comparisons will be made with

statistical and other artificial intelligence tech-

niques. All classifiers will be evaluated by look-

ing at their classification accuracy and the area

under the receiver operating characteristic curve
(AUROC). The latter basically illustrates the be-

havior of a classifier without regard to class dis-

tribution or misclassification cost, so it effectively

decouples classification performance from these

factors. Furthermore, we will also look at the

complexity of the trained classifiers because from

a marketing viewpoint, parsimonious, yet accu-

rate and self-explanatory models are to be pre-
ferred.

This paper is organized as follows. In Section 2,

we elaborate on the recent literature on relation-

ship marketing that has provided motivation for

investigating the predictability of the customer�s
spending evolution. To this end, we use Bayesian

network classifiers which are discussed in Section

3. The design of the study, including both the data
set description and the used performance criteria,

are presented in Section 4. Section 5 presents the
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results of the experiments. Finally, Section 6 con-
cludes the paper.
2. Relevance of the estimation of a customer’s

spending evolution

Advocates of traditional relationship marketing

attribute several advantages to loyal customers.
Most importantly, these are expected to raise their

spending (and contribution to the company) over

their relationship with the company in case [43]. In

the most optimistic settings, they are said to gen-

erate new customers by their positive word-

of-mouth [22], ensure diminished costs to serve [31],

exhibit reduced consumer price sensitivities [42] and

have a salutary impact on the company�s em-
ployees [43]. Since, from a database-driven ap-

proach, customer tenure (i.e. the length of a

customer�s relationship with a company) has often

been used to approximate the loyalty construct

[22,44,45], relationship marketing thrives on the

idea that raising the length of the customer–com-

pany relationship is the main lever for a company�s
financial success [43].

Nevertheless, in their recent article, Reinartz

and Kumar [45] report a series of studies across

industries that challenges most claims of the loyalty

advocates. In these studies, they have found no

evidence to suggest that long-life customers with

steady purchase behavior are necessarily cheaper

to serve, less price sensitive, or more effective in

bringing new business to the company, such as
through word-of-mouth referrals. Additionally, in

a previous article, Reinartz and Kumar [44] showed

that the contributions of long-life customers were

generally declining, although the analysis of this

issue was not the focus of their discussion. Finally,

the authors pointed out that, at least for a non-

contractual setting, short-life but high-revenue

customers accounted for a sizeable amount of
profits for the mail-order company in case [44].

In the article mentioned above, Reinartz and

Kumar clearly illustrate the pitfalls involved with

spending a large slice of the marketing budget on

customers that have been good customers in the

past over a short-period of time, yet tend to show a

decreasing spending pattern (i.e. customers that
have been labelled �butterflies�) [45]. In the example
of a mail-order setting, it is generally known that

repurchase behavior can––and has––effectively

been modeled by using an (often linear) combi-

nation of RFM variables, representing the recency

of a customer�s last purchase, the average fre-

quency of the customer�s purchases and the aver-

age monetary value spent on the customer�s
purchase occasions [12,50]. Hence, the group of
customers called �butterflies�, being customers with

a high historical monetary value, will tend to be

over selected for mailing campaigns [45]. An esti-

mation of the future slope of the customer lifecycle

(i.e. a customer�s spending evolution) would then

likely be able to deliver the required insights to the

decision-making process and the understanding of

the relationship between the slope and other vari-
ables, such as customer spending, might generate

rich qualitative information for marketers. For

instance, for this group of customers, the company

might decide to attempt to improve its return

on (direct) marketing investments by shifting its

focus from long-term investments to investments

or promotions on which a short-term return is

possible. Alternatively, the company might even
consider abandoning investments in these cus-

tomers altogether. Thus, in this customer-based

view, the a priori knowledge of the slope of the

customer lifecycle would be useful information.

In this research study we limit our attention in

terms of marketing contribution to proving that it

is possible to predict the slope of the customer

lifecycle of long-life customers. Accordingly, due
to the limitations that are extensively documented

in Section 7 of this paper, it is not within the scope

of this paper to devise, implement and test an

optimal marketing strategy for a specific company

in case, nor for an array of companies in industries

with different characteristics. In this attempt, we

will compare different techniques for the estima-

tion problem, which can in its essential form be
transformed into a binary classification problem:

�Will newly acquired customers increase or de-

crease their spending after their first purchase ex-

periences?�
In the marketing literature, binary classifica-

tion problems have typically been tackled by

using traditional statistical methods (e.g. discri-
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minant analysis and logistic regression [2,50]),
non-parametric statistical models (e.g. k-nearest
neighbour [50] and decision trees [49,50]) and

neural networks [2,50]. In this paper, we will adopt

Bayesian network classifiers which have been re-

cently introduced in the artificial intelligence lit-

erature. This is motivated by the fact that Bayesian

network classifiers are probabilistic white-box

models which facilitate a clear insight into the
underlying dependencies pertaining to the domain

under study. They are based on solid probabilistic

reasoning and offer a great potential for know-

ledge discovery in data in a marketing context.

Unfortunately, despite their attractive properties,

their application for business decision making and

marketing purposes is still limited. In the following

section, we will elaborate on the basic concepts of
Bayesian network classifiers and discuss some re-

cently suggested structure learning algorithms.
1 Note that we hereby assume that the data set is complete,
3. Bayesian networks for classification

A Bayesian network (BN) represents a joint

probability distribution over a set of discrete, sto-
chastic variables. It is to be considered as a prob-

abilistic white-box model consisting of a qualitative

part specifying the conditional (in)dependencies

between the variables and a quantitative part

specifying the conditional probabilities of the data

set variables [36]. Formally, a Bayesian network

consists of two parts B ¼ hG;Hi. The first part G is

a directed acyclic graph consisting of nodes and
arcs. The nodes are the variables X1; . . . ;Xn in the

data set whereas the arcs indicate direct depen-

dencies between the variables. The graph G then

encodes the independence relationships in the

domain under investigation. The second part of the

network, H, represents the conditional probability

distributions. It contains a parameter hxi jPxi
¼

PBðxi j PxiÞ for each possible value xi of Xi, given
each combination of the direct parent variables of

Xi, Pxi of PXi , where PXi denotes the set of direct

parents of Xi in G. The network B then represents

the following joint probability distribution:

PBðX1; . . . ;XnÞ ¼
Yn

i¼1
PBðXi j PXiÞ ¼

Yn

i¼1
hXijPXi

: ð1Þ
The first task when learning a Bayesian network is

to find the structure G of the network. Once we

know the network structure G, the parameters H
need to be estimated. In general, these two esti-

mation tasks are performed separately. In this

paper, we will use the empirical frequencies from

the data D to estimate these parameters: 1

hxijPxi
¼ P̂Dðxi j PxiÞ: ð2Þ

It can be shown that these estimates maximise the

log likelihood of the network B given the data D
[21]. Note that these estimates might be further
improved by a smoothing operation [21].

A Bayesian network is essentially a statistical

model that makes it feasible to compute the (joint)

posterior probability distribution of any subset of

unobserved stochastic variables, given that the

variables in the complementary subset are ob-

served. This functionality makes it possible to use

a Bayesian network as a statistical classifier by
applying the winner-takes-all rule to the posterior

probability distribution for the (unobserved) class

node [15]. The underlying assumption behind the

winner-takes-all rule is that all gains and losses are

equal (for a discussion of this aspect see, e.g., [15]).

In what follows, we will discuss several structure

learning algorithms for developing Bayesian net-

work classifiers.

3.1. The Naive Bayes classifier

A simple classifier, which in practice often per-

forms surprisingly well, is the Naive Bayes classi-

fier [15,30,33]. This classifier basically learns the

class-conditional probabilities P ðXi ¼ xi j C ¼ clÞ
of each variable Xi given the class label cl. A new
test case (X1 ¼ x1; . . . ;Xn ¼ xn) is then classified by

using Bayes� rule to compute the posterior prob-

ability of each class cl given the vector of observed

variable values:

PðC ¼ cl j X1 ¼ x1; . . . ;Xn ¼ xnÞ

¼ P ðC ¼ clÞPðX1 ¼ x1; . . . ;Xn ¼ xn j C ¼ clÞ
PðX1 ¼ x1; . . . ;Xn ¼ xnÞ

:

ð3Þ
i.e. no missing values.



Fig. 1. The Naive Bayes classifier.
Fig. 2. The Tree Augmented Naive Bayes classifier.
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The simplifying assumption behind the Naive

Bayes classifier then assumes that the variables are

conditionally independent given the class label.

Hence,

P ðX1 ¼ x1; . . . ;Xn ¼ xn j C ¼ clÞ

¼
Yn

i¼1
PðXi ¼ xi j C ¼ clÞ: ð4Þ

This assumption simplifies the estimation of the

class-conditional probabilities from the training

data. Notice that one does not estimate the de-

nominator in expression 3 since it is independent of

the class. Instead, one normalises the nominator
term PðC ¼ clÞP ðX1 ¼ x1; . . . ;Xn ¼ xn j C ¼ clÞ to

1 over all classes. Naive Bayes classifiers are easy to

construct since the structure is given a priori and no

structure learning phase is required. The proba-

bilities P ðXi ¼ xi j C ¼ clÞ are estimated by using

the frequency counts for the discrete variables and

a normal or kernel density based method for con-

tinuous variables [30]. Fig. 1 provides a graphical
representation of a Naive Bayes classifier.

3.2. Tree Augmented Naive Bayes classifiers

In [21] Tree Augmented Naive Bayes classifiers

(TANs) were presented as an extension of the

Naive Bayes classifier. TANs relax the indepen-

dence assumption by allowing arcs between the
variables. An arc from variable Xi to Xj then im-

plies that the impact of Xi on the class variable also

depends on the value of Xj. An example of a TAN

is presented in Fig. 2. In a TAN network the class

variable has no parents and each variable has as

parents the class variable and at most one other

variable. The variables are thus only allowed to
form a tree structure. In [21], a procedure was

presented to learn the optional arrows in the

structure that forms a TAN network. This proce-

dure is based on an earlier algorithm suggested by
Chow and Liu (CL) [11]. The procedure consists of

the following five steps.

1. Compute the conditional mutual information

given the class variable C, IðXi;Xj j CÞ, be-

tween each pair of variables, i 6¼ j.
IðXi;Xj j CÞ is defined as follows:

IðXi;Xj j CÞ ¼
X

xi ;xj;cl

P ðXi ¼ xi;Xj ¼ xj;C ¼ clÞ

� log
P ðXi ¼ xi;Xj ¼ xj j C ¼ clÞ

P ðXi ¼ xi j C ¼ clÞP ðXj ¼ xj j C ¼ clÞ
:

ð5Þ
This function is an approximation of the

information that Xj provides about Xi (and

vice versa) when the value of C is known.

2. Build a complete undirected graph in which
the nodes are the variables. Assign to each

arc connecting Xi to Xj the weight IðXi;Xj j CÞ.
3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a

directed one by choosing a root variable and

setting the direction of all arcs to be outward

from it.

5. Add the classification node C and draw an arc
from C to each Xi.

We used Kruskal�s algorithm in step 3 to con-

struct the maximum weighted spanning tree [32].

In [21], it was proven that the above procedure

builds TANs that maximise the log likelihood of
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the network given the training data and has time
complexity Oðn2 � NÞ with n the number of vari-

ables and N the number of data points. Experi-

mental results indicated that TANs outperform

Naive Bayes with the same computational com-

plexity and robustness [21].

3.3. General Bayesian Network classifiers

Many algorithms have been proposed that can

learn the structure of a General Bayesian Network

(GBN) from a set of (complete) data [5,29]. Some

algorithms impose restrictions onto the direction

of the arcs that connect the nodes whereas other

algorithms omit such restrictions. In this paper, we

use the learning algorithm of Cheng et al. [7,9],

which assumes an a priori ordering of the vari-
ables. Before we discuss the different steps of this

algorithm, we first elaborate on the concept of d-
separation because this plays a pivotal role in the

structure learning algorithm.

Let X , Y and Z be mutually disjoint sets of

nodes in a directed acyclic graph G. The set Y is

said to d-separate the sets X and Z in G if for every

node Xi 2 X and every node Xj 2 Z, every chain (of
any directionality) from Xi to Xj in G is blocked by

Y [51]. We say that a chain s is blocked by a set of

nodes Y if s contains three consecutive nodes X1,

X2, X3, for which one of the following conditions

holds [51]:

1. arcs X1  X2 and X2 ! X3 are on the chain s,
and X2 2 Y ;

2. arcs X1 ! X2 and X2 ! X3 or X1  X2 and

X2  X3 are on the chain s, and X2 2 Y ;
3. arcs X1 ! X2 and X2  X3 are on the chain s

and X2 and the descendants of X2 are not in Y .

It can be shown that if sets of variables X and Z
are d-separated by Y in a directed acyclic graph G,
then X is independent of Z conditional on Y in
every distribution compatible with G [24,52]. It is

precisely this property that will be exploited in the

algorithm of Cheng to learn the Bayesian network

structure.

The algorithm consists of four phases. In a first

phase, a draft of the network structure is made

based on the mutual information between each
pair of nodes. The second and third phase then
add and remove arcs based on the concept of d-
separation and conditional independence tests.

Finally, in the fourth phase, the Bayesian network

is pruned and its parameters are estimated.

The algorithm proceeds as follows [7,9].

Phase 1: Drafting

1. Initiate a graph GðX ;AÞ where X ¼ fX1;
X2; . . . ;Xn;Cg and A ¼ fg. Initiate two empty

ordered sets S and R.
2. Compute the (non-parametric) mutual infor-

mation IðXi;XjÞ between each pair of variables

where Xi;Xj 2 X , i 6¼ j. IðXi;XjÞ is defined as

follows:

IðXi;XjÞ ¼
X

xi;xj

PðXi ¼ xi;Xj ¼ xjÞ

� log
P ðXi ¼ xi;Xj ¼ xjÞ
P ðXi ¼ xiÞP ðXj ¼ xjÞ

: ð6Þ
The mutual information IðXi;XjÞ is the

amount of information gained about Xi when

Xj is known, and vice versa (IðXi;XjÞ ¼
IðXj;XiÞ). Hence, IðXi;XjÞ ¼ 0 if and only if Xi

and Xj are independent.
3. Sort all pairs of nodes where IðXi;XjÞ is greater
than � from large to small and put them into
an ordered set S. In our experiments, we set

� ¼ 0:008 which is an appropriate value for

large data sets [9].

4. Add arcs to A according to the first two pairs

of nodes in S and remove them from S. The di-
rection of the arcs is decided by the a priori

node ordering.

5. Get the first pair of nodes remained in S and re-
move it from S. If there is no open path between

the two nodes, add the corresponding arc to A.
Otherwise, add the pair of nodes to the end of

an ordered set R. Note that an open path is a

chain with no collider nodes whereby a collider

node is a node having two incoming arcs.

6. Repeat step 5 until S is empty.

Phase 2: Thickening

7. Get the first pair of nodes in R and remove it

from R.
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8. Find a cut-set that can d-separate these two

nodes in the current network. Use a condi-

tional independence test (see Eq. (5)) to see if

these two nodes are conditionally independent

given the cut-set and using a threshold value of

0.008. If so, go to the next step, otherwise, con-

nect the pair of nodes by an arc.

9. Repeat step 7 until R is empty.
Phase 3: Thinning
10. For each arc in A, if there are other paths be-

sides this arc between the two nodes, remove

this arc from A temporarily and find a cut-set

that can d-separate the two nodes in the cur-

rent network. Use a conditional independence
test to see if the two nodes are conditionally in-

dependent given the cut-set and again using a

threshold value of 0.008. If so, remove the

arc permanently, otherwise add the arc back

to the network.

Phase 4: Prune and learn the parameters of the

Bayesian network classifier

11. Find the Markov Blanket of the classification

node. The Markov Blanket of a node Xi con-

sists of the union of Xi�s parents, Xi�s children
and the parents of Xi�s children [36].

12. Delete all the nodes that are outside the Mar-

kov Blanket.

13. Learn the parameters of the conditional prob-
ability tables and output the Bayesian network

classifier.

Note that in steps 8 and 10, it is important to

find cut-sets that are as small as possible in order

to avoid conditional independence tests with large

condition sets. In [1], a correct algorithm is pre-

sented to find minimum cut-sets between two
nodes. In this paper, we will use the heuristic al-

gorithm suggested by Cheng et al. [7].

It can be shown that when the values of the

variables in the Markov Blanket of the classifica-

tion node are observed, the posterior probability

distribution of the classification node is indepen-

dent of all other variables (nodes) not in the

Markov Blanket [34]. Hence, in step 12, all vari-
ables outside the Markov Blanket can be safely
deleted because they will have no impact on the

classification node and thus will not affect the

classification accuracy. In this way, the Markov

Blanket results in a natural form of variable se-

lection.

Note that this algorithm requires OðN 2Þ mutual

information tests and is linear in the number of

cases N . An extension has been presented in [8] in
case no node ordering is given. In this paper, we

will simply treat the classification node as the first

node and order the other nodes based on their

correlation with the classification node from large

to small.

3.4. Multinet Bayesian network classifiers

Both TANs and GBNs assume that the rela-

tions between the variables are the same for all

classes. A multinet Bayesian network allows for

more flexibility and is composed of a separate,
local network for each class and a prior proba-

bility distribution of the class node [10,21,23,28].

Thus, for each value ci of the classification node C
a Bayesian network structure Bi is learned. The

multinet M then defines the following joint prob-

ability distribution:

PMðC;X1; . . . ;XnÞ ¼ PCðCÞ � PBiðX1; . . . ;XnÞ: ð7Þ
A new instance is then assigned to the class that

maximises the posterior probability PMðC j X1; . . . ;
XnÞ conform the winner-takes-all rule. Since we

have

PMðC j X1; . . . ;XnÞ ¼
PMðC;X1; . . . ;XnÞ
PMðX1; . . . ;XnÞ

; ð8Þ

and the denominator is the same for all classes, we

can assign the instance to the class that maximises

the value of Eq. (7). The term PCðCÞ may then be
estimated by the empirical frequency of the class

variable in the training set P̂DðCÞ. Note that for

multinet classifiers the number of parameters that

need to be estimated per training instance inevi-

tably increases. As the parameters are estimated

from a limited number of instances, learning a

separate multinet structure per class instead of one

overall structure results in more unreliable para-
meter estimates and, hence, a higher probability of
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overgeneralization. This effect is closely related to

the so-called peaking phenomenon, for a discus-

sion see, e.g., [53].

In this paper, we consider both CL multinets

and GBN multinets. CL multinets are multinets

which are built using the procedure of Chow and

Liu [11]. This is essentially the same procedure as

the one outlined in Section 3.2 with the exception
that step 5 is now omitted and in step 1 the con-

ditional mutual information is replaced by the

mutual information (see Eq. (6)). This procedure is

then executed separately for each value ci of the

class node C using only the training data Di

whereby Di contains all instances of D for which

C ¼ ci. The resulting multinet then consists of an

ensemble of tree structured Bayesian networks.
The GBN multinets are trained using the approach

of Cheng discussed in Section 3.3 with the excep-

tion that the classification node is now omitted in

the structure learning phase. Again, the algorithm

is executed for each class on the corresponding

training data.
Table 1

Data set characteristics

Data set size 3827 observations

Training set size 2551 observations

Test set size 1276 observations

Number of attributes 15
4. Design of the study

4.1. Data set

We conducted our research on UPC scanner

data of a large Belgian DIY (Do-It-Yourself) retail

chain. The data we used for our models were all

gathered by the customer loyalty cards, which
have been in use since January 1995. Due to some

restrictions (cf. infra), we were able to use four

complete years of information.

Since we are interested in examining the be-

havior of long-life customers, we imposed three

conditions on the data: firstly, we only used cus-

tomers who started purchasing before February

1997. Secondly, to ensure the data was not left-
censored (i.e. to ensure the customers in our dat-

abase really started their relationship with the

company at the time of our first observation), we

only used information of customers who had not

purchased before. We thus used the first two years

of information in the customer database only to

check that the customers in our sample were new

customers. Thirdly, using a database containing
eight six-month periods of information for all
customers of the company, we have selected all

customers who purchased in five or more periods.

Hence, we arrived at a database containing an

approximate sample of the company�s long-life

customers. In order to assess the quality of our

models, we have randomly divided the database

into two parts. While 2/3 of the observations were

used for learning the classifiers, the remaining 1/3
was used as a test set for estimating the general-

ization behavior of the classifiers. Table 1 displays

the characteristics of our data set.

By performing a linear regression model on the

historical contributions of each customer, we were

able to capture the slope of the lifecycle of each

individual customer. This slope, after being dis-

cretised into positive or negative to represent in-
creasing or decreasing spending, was henceforth

used as the dependent variable in the study

(SlopeSign). It is interesting to note that the find-

ing of Reinartz and Kumar that the slope of long-

life customers was generally decreasing [44] was

validated in our study by the fact that only 28% of

those customers in the database exhibited a posi-

tive slope. In this case, we have used a set of 15
continuous variables computed on the first six

months of information, in order to predict the sign

of the evolution of the customer�s contribution (i.e.

the customer lifecycle) for the remaining 42

months of the relationship. While the variables

computed are presented in Table 2, the time

schedule is given in Fig. 3.

The independent variables can be divided into
four major logical groups. A first group of vari-

ables is constructed to measure the volume of the

purchases the subject made during his or her first

six months as a customer. These contain TotCont,

TotRev, NumbArt and NumbTick. Note that the

variable TotCont represents the intercept of the

customer lifecycle. It is merely the first of the eight



Table 2

Variables used in the study

1 Total contribution TotCont

Total revenues TotRev

Total number of articles bought NumbArt

Total number of visits to the

store (tickets)

NumbTick

2 Amount of different categories

purchased

DiffCat

Amount of different products

purchased

DiffProd

Maximum percentage of products

bought in one product family

MaxPerc

3 Mean margin of articles purchased MeanMarg

Mean price of articles purchased MeanPrice

Maximum price paid for an article MaxPrice

Total value of received discounts/

total revenues

PercDisc

Articles bought in discount/total

amount of articles bought

ArtDisc

4 Slope of the �customer lifecycle�
during the first six months

Lifec6m

Contribution in the sixth month LastCont

Date the maximum price was paid DateMaxPrice

2 http://www.cs.waikato.ac.nz/ml/weka/.
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data points forming the customer lifecycle. While
this first set of attributes can be regarded as the

‘‘depth’’ of the customer purchases, the second

group of variables contains the variables that

measure the ‘‘broadness’’ of the purchases. These

are DiffCat, DiffProd and MaxPerc. The latter

variable contains the percentage of products

bought in the product category in which the cus-

tomer has bought most of his or her products. In
this way, it can be seen as a skewness indicator, a

large indicator meaning that the customer only

buys a certain category of products from the

company. A third group of variables captures

the �bargaining tendency� and �price sensitivity� of
the customer. The relevant variables here are

PercDisc, ArtDisc, MeanMarg, MeanPrice and

MaxPrice. Finally, three measures are introduced
to value evolutions within the first six months.

These are Lifec6m, LastCont and DateMaxPrice.

In order to train the Bayesian network classifi-

ers, we discretised all variables by using the dis-

cretisation algorithm of Fayyad and Irani with

the default options [19]. This algorithm uses an

information entropy minimisation heuristic to
discretise the range of a continuous-valued at-
tribute into multiple intervals. This discretisation

procedure was performed using the Java Weka

workbench. 2 Table 3 depicts how the attributes in

our data set were discretised into intervals.

4.2. Performance criteria for classification

The performance of all trained classifiers will be
quantified using both the classification accuracy

and the AUROC. The classification accuracy is

undoubtedly the most commonly used measure of

performance of a classifier. It simply measures the

percentage of correctly classified (PCC) observa-

tions. However, it tacitly assumes equal misclas-

sification costs and balanced class distributions

[38]. The receiver operating characteristic curve
(ROC) is a two-dimensional graphical illustration

of the sensitivity (�true alarms�) on the Y -axis ver-
sus 1-specificity on the X -axis (�false alarms�) for
various values of the classification threshold

[16,48]. It basically illustrates the behavior of a

classifier without regard to class distribution or

misclassification cost. The AUROC then provides

a simple figure-of-merit for the performance of the
constructed classifier. An intuitive interpretation

of the AUROC is that it provides an estimate of

the probability that a randomly chosen instance of

class 1 is correctly rated (or ranked) higher than a

randomly selected instance of class 0 [26].

We will use McNemar�s test to compare the

PCCs of different classifiers [17]. This chi-squared

test is based upon contingency table analysis to
detect statistically significant performance differ-

ences between classifiers. In [14], it was shown that

this test has acceptable Type I error which is the

probability of incorrectly detecting a difference

when no difference exists. While Hanley and

McNeil described a method for comparing ROC

curves derived from the same sample [27], De

Long et al. [13] developed a non-parametric chi-
squared test by using the theory on generalized U -

statistics and the method of structural components

to estimate the covariance matrix of the AUROC.

Hence, we will use the latter test to detect

http://www.cs.waikato.ac.nz/ml/weka/


Fig. 3. Time schedule of our empirical study.

Table 3

Discretisation of the attributes

Attribute Values Encoding

TotCont 1,2,3,4 ]�1;241.74],]241.74;817.92],]817.92;3158.09],]3158.09;1]

TotRev 1,2,3,4 ]�1;679.53],]679.53;2481.82],]2481.82;7410.12],]7410.12;1]

NumbArt 1,2,3,4 ]�1;4],]4;13],]13;38],]38;1]

NumbTick 1,2,3 ]�1;2],]2;5],]5;1]

DiffCat 1,2,3,4 ]�1;2],]2;6],]6;13],]13;1]

DiffProd 1,2,3 ]�1;4],]4;11];]11;1]

MaxPerc 1,2,3,4 ]�1;0.49],]0.49;0.5],]0.5;0.98],]0.98;1]

MeanMarg 1,2 ]�1;0.53],]0.53;1]

MeanPrice 1,2 ]�1;118.16],]118.16;1]

MaxPrice 1,2,3,4 ]�1;165],]165;549],]549;1095],]1095;1]

PercDisc 1,2 ]�1;0.17],]0.17;1]

ArtDisc 1,2,3 ]�1;0],]0;0.33],]0.33;1]

Lifec6m 1,2,3 ]�1;-72.24],]-72.24;87.61],]87.61,1]

LastCont 1,2,3 ]�1;621.85],]621.85;2010.85],]2010.85;1]

DateMaxPrice 1,2 ]�1;13544],]13544;1]
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statistically significant AUROC differences be-
tween classifiers.
5. Results

We compared and contrasted the performance

of the Naive Bayes, TAN, CL multinet, GBN,

GBN multinet, C4.5, C4.5rules, linear discrimi-
nant analysis (LDA) and quadratic discriminant

analysis (QDA) classifiers on our marketing data

set. We included the decision tree induction algo-

rithm C4.5 and its rules variant, C4.5rules, because

they are also white-box classifiers giving besides a

classification decision also a clear explanation why

the particular classification is being made [39].

LDA and QDA were included because they are
well-known benchmark statistical classifiers. To

train the Naive Bayes, TAN, and CL multinet
classifiers, we used the Matlab toolbox of Kevin
Murphy [35]. For the GBN and GBN multinet

classifiers, we used the PowerPredictor software of

Cheng [6]. Table 4 depicts the classification accu-

racy of all classifiers on both the training and test

set. The best test set performance is in bold face

and underlined and those not statistically different

from it according to McNemar�s test (using a sig-

nificance level of 5%) are in bold face. The GBN
classifier achieved the highest classification accu-

racy on the test set. The classification accuracy of

the TAN, C4.5 and LDA classifier was not sta-

tistically different from it. Table 5 depicts the

AUROC of all classifiers and has the same setup as

Table 4. Note that for the Bayesian network

classifiers, the LDA and QDA classifier, the cal-

culation of the AUROC values poses no problems
since each of these classifiers yields class prob-

abilities. For C4.5, we use the confidence at the



Table 4

Classification accuracy of the Bayesian network classifiers ver-

sus C4.5 and discriminant analysis

Training set Test set

Naive Bayes 71.0 72.5

TAN 74.9 74.0

CL multinet 74.2 72.3

GBN 75.3 75:0

GBN multinet 70.6 72.3

C4.5 76.7 74.1

C4.5rules 77.8 73.3

LDA 75.5 74.1

QDA 72.9 72.7

Table 5

Area under the receiver operating curve of the Bayesian net-

work classificiers versus C4.5 and discriminant analysis

Training set Test set

Naive Bayes 75.9 74.3

TAN 77.8 73.6

CL multinet 77.0 72.6

GBN 77.5 74.7

GBN multinet 76.6 74.0

C4.5 76.5 73.8

C4.5rules 77.0 70.9

LDA 77.7 75:9

QDA 77.0 72.7

Table 6

Complexity of the Bayesian network classifiers and C4.5

Naive Bayes 16 nodes and 15 arcs

TAN 16 nodes and 29 arcs

CL multinet Net 1: 15 nodes and 14 arcs

Net 2: 15 nodes and 14 arcs

GBN 4 nodes and 6 arcs

GBN multinet Net 1: 3 nodes and 2 arcs

Net 2: 3 nodes and 2 arcs

C4.5 13 internal nodes

32 leave nodes

C4.5rules 18 rules
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leaves as the class probability. For C4.5rules, we
used the confidence of the first rule of the ordered

C4.5rules rules set (ordered by class and then by

confidence) that matches the instance as its class

probability. In [18], it was shown that this is a

feasible strategy for computing the AUROC of

C4.5rules. Table 5 clearly indicates that the LDA

classifier gave the best AUROC performance.

However, there is no significant difference with the
AUROC performance of the GBN and Naive

Bayes classifier according to the test of De Long

et al. and again using a significance level of 5%.

Observe from Tables 4 and 5 that both multinet

classifiers, QDA and C4.5rules never achieved

good performance in terms of PCC and AUROC.

Note that for all Bayesian network classifiers, we

also investigated the impact of smoothing the
parameter estimates. However, no significant per-

formance increase in terms of either the PCC

or AUROC values were found with parameter

smoothing.
Besides looking at the classification perfor-
mance, we also investigated the complexity of the

generated classification models because from a

marketing viewpoint, easy to understand, parsi-

monious models are to be preferred. Table 6 pre-

sents the complexity of the generated Bayesian

network and C4.5(rules) classifiers. We did not

include LDA and QDA because they are basically

mathematical models which give a rather limited
insight into the relationships and patterns present

in the domain under study. The Naive Bayes and

TAN network classifiers did not prune any attri-

butes because all attributes remained in the Mar-

kov Blanket of the classification node. The TAN

added 14 arcs to the Naive Bayes classifier which

resulted in a performance increase in terms of PCC

(from 72.5 to 74.0) but a performance decrease in
terms of AUROC (from 74.3 to 73.6). Hence, the

effect of the added complexity was rather marginal

in our case. Although the GBN multinet classifier

seems attractive because of its simple structure, its

performance according to Tables 4 and 5 was ra-

ther bad. Also the CL multinet classifier gave bad

performance and has on top a complex structure.

The tree induced by C4.5 is not easy to handle and
interpret because of its large number of internal

and leave nodes. Moreover, the C4.5 tree was able

to prune only 2 of the 15 attributes. The rule set

inferred by C4.5rules contains 18 rules. This might

seem interesting but when considering Tables 4

and 5 the performance of C4.5rules in terms of

both PCC and AUROC was rather bad. Note that

while the C4.5 tree pruned two attributes, the
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C4.5rules rules set still contained all attributes.
This can be explained by the fact that C4.5rules

starts generating and pruning the rules from the

unpruned C4.5 tree. The GBN classifier was able

to prune 12 attributes, leaving only three attributes

in the model. Only six arcs where necessary to ef-

ficiently model the dependencies between the at-

tributes and the classification node. Furthermore,

it gave also a very good performance in terms of
PCC and AUROC on the test set. The structure of

the GBN classifier is depicted in Fig. 4.

This figure clearly illustrates that it is a compact,

parsimonious and yet powerful model for decision

making. By using only three variables compiled

from purchase records of the first six months of the

customer lifecycle, we have provided evidence that,

in our DIY case, the SlopeSign of a lifecycle of 48
months can be predicted with a classification ac-

curacy of 75%. The total contribution of the client

(TotCont), the total number of articles bought

(NumbArt) and the maximum percentage of

products bought in one product family (MaxPerc)

proved to be very powerful predictors for the sign

of the customer lifecycle slope when using GBN

classifiers. While the first two variables present a
measure of the volume of the purchases made (the

purchase ‘‘depth’’), the latter variable is an esti-

mator of the variety of product families bought

(the purchase ‘‘broadness’’).

The knowledge that these variables are intensely

related to the slope�s evolution can be useful for

marketing decision makers. In this Belgian DIY

retail setting, the initial monetary amount spent at
the company (TotCont) and the initial number of
Fig. 4. Unrestricted Bayesian network constructed for mar-

keting case.
articles purchased (NumbArt) were found to be
negatively related to the SlopeSign, whereas the

maximum percentage of products purchased in

one category (MaxPerc) was found to be positively

related to the SlopeSign. This implies that cus-

tomers that tend to increase their spending over

their lifetime with the company initially spend less

money on a lower number of articles, purchasing

from a smaller set of product categories. Alterna-
tively, customers spending a lot of money initially

on a lot of articles and who purchase products

across a lot of different categories tend to decrease

their spending in the future. This information may

prove valuable for the company in this case as a

starting point for investigating why high-spending

customers generally decrease their spending over

time.
To conclude, we can state that Bayesian net-

work classifiers are performing well in predicting

the future customer evolution and are able to

contribute to an increased understanding of the

relationship between the investigated variable and

the most relevant explanatory variables. Hence, we

have reached our goal to illustrate that Bayesian

network classifiers can be considered to be a useful
tool in the toolbox of marketing analysts in this

application of identifying the slope of the customer

lifecycle of long-life customers.
6. Conclusions

In the theoretical part of this paper, we have
argued that long-life/loyal customers have been

regularly regarded as a homogeneous group of the

most profitable customers of a company. Building

on more recent findings, in this study, we have

tried to acknowledge the heterogeneity in the

group of long-life customers by dividing the group

into two subparts, essentially consisting of cus-

tomers increasing versus decreasing their spending
over their relationship with the company in case.

Hence, it was the goal of this study to predict the

sign of the slope––being the output of the esti-

mation of a linear customer lifecycle––at the in-

dividual customer level using Bayesian network

classifiers based on information from initial pur-

chase occasions.
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Bayesian network classifiers have been recently
proposed in the artificial intelligence literature as

probabilistic white-box models which allow to give

a clear insight into the relationships between the

variables of the domain under study. Starting from

the Naive Bayes classifier, we gradually removed

the restrictions put on the network structure and

investigated TANs and GBN classifiers. The latter

were learnt using the algorithm of Cheng et al. We
compared the classification accuracy and the

AUROC of all Bayesian network classifiers with

discriminant analysis and the widely used C4.5 and

C4.5rules algorithms. It was shown that general,

unrestricted Bayesian network classifiers have a

good performance in terms of both measures.

Furthermore, using the Markov Blanket concept

allowed us to prune a lot of attributes resulting in
a compact, parsimonious, yet powerful Bayesian

network classifier for marketing decision making.

In summary, we contribute to the literature by

providing experimental evidence that: (1) Bayesian

network classifiers offer an interesting and viable

alternative for our customer lifecycle slope esti-

mation problem; (2) the Markov Blanket concept

allows for a natural form of attribute selection that
was very effective for the case at hand; (3) the sign

of the slope can be predicted with a powerful and

parsimonious GBN classifier; (4) a set of three

variables measuring the volume of initial pur-

chases and the degree to which customers origi-

nally buy in different categories, are a powerful set

of predictors for estimating the sign of the slope.
7. Practical implications and issues for further

research

While it has been the focus of this paper to

demonstrate (i) the predictability of the sign of the

slope and (ii) the performance of several Bayesian

network classifiers versus statistical and other arti-
ficial intelligence techniques, here, we elaborate

on possible applications of the knowledge of the

sign of the slope for relationship marketing deci-

sion making. A number of future applications lie

ahead. Firstly, the sign of the slope might prove to

be a useful indicator in the decision upon the type

or strength of the marketing investment that can
be used vis-�a-vis a certain consumer. For example,
a company organizing a membership club, with

special service offerings, special promotions, etc.

might only want to deliver these benefits to con-

sumers that are worthy of such a large investment.

Thus, knowing that certain consumers will de-

crease their spending might be important for im-

proving the return on the relationship marketing

investment. Alternatively, a company might have
two marketing incentives of unequal cost (e.g. a

special promotion versus a small gift). Also in this

case, it could be useful to assess the future

spending of a customer in order to allocate the

desired incentive to each customer. Secondly, the

estimations may be used in an aggregated way, as

a monitor of e.g. customer-acquisition policies. In

this way, the percentage of customers that are
expected to raise their spending in the future can

be compared for different acquisition strategies

and campaigns in order to select those target

markets with higher potential for establishing en-

during relationships. An additional benefit is de-

rived from the fact that it was possible to predict

the evolutions very early in the relationships, so

acquisition campaigns can be evaluated in a time-
effective way. Thirdly, the estimations might be

used as a dimension for designing an a priori

segmentation scheme for a company�s customer

base. Hence, it might be feasible to delineate a

more customized customer strategy per segment.

Two possible applications are summarized in Fig.

5. In the first segmentation scheme (a), the sign of

the slope is used together with the tenure of
customers in order to decide upon the relevant

marketing message content and size. Whereas

short-life customers only merit investments that

can be regained during their limited relationship

with the company, long-life customers might ef-

fectively be reached through more expensive mar-

keting programs. For customers who are expected

to increase the relationship with the company
(who are likely to be more satisfied with the

company in case) it might be beneficial to offer

additional products according to their detected

needs (detected e.g. through a cross-selling analy-

sis) or extra value (e.g. through the membership to

a club). Alternatively, customers who are expected

to decrease their spending might be appropriately



Fig. 5. Summary of possible a priori segmentation schemes.
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managed with a retention program (e.g. focused

on complaint detection and complaint handling).

In the second segmentation scheme (b), the inter-

cept and the slope of the customer lifecycle are

used to delineate the segmentation. Also in this
case, argumentation could be found to use specific

marketing strategies to target the segments, where

it could be argued that not all segments merit

targeting (e.g. the segment of customers that starts

as low-spending customers and are expected to

decrease their spending even further).

The desired outcome of this line of research

could consist in suggesting an optimal CRM
strategy to different segments. However, in order

to test the optimality of the proposed strategies,

one would have to design and implement an ex-

periment allocating strategies randomly to cus-

tomers. It can be argued that several important

practical problems would arise when attempting to

implement such a study.

Firstly, a company that has not been perform-
ing a broad range of different CRM strategies

would have to make large marketing investments

in designing an appropriate tactic for each strate-

gic goal (e.g. customer retention through satis-

faction research, complaint handling, or other

tactics). Secondly, and crucially, for optimally al-

locating a customer to a strategy, it would be

necessary to assign a sizeable part of the customer
base randomly to each of the strategies, implying

that by definition, customers will be targeted with

strategies that are inappropriate for them, imply-

ing large marketing expenses with low return on
investment, confused and unsatisfied customer re-

sponses, especially within the group of high-

spending customers that has been proven to expect

preferential (or at least reasonable) treatment

compared to other customers [45]. While this ex-
perimental setting would likely provide rich in-

formation to researchers, the costs involved are,

especially while marketing management is aware

of the long-term potential of customers, of a

magnitude that is not acceptable to managers.

Thirdly, even if a company would be interested in

researching such an optimal segmentation scheme,

the generalization capacity would probably be
low, considering the specificity of the tactics used.

Hence, the scientific outcome of the study might

only be reached when validated with several tactics

for each strategy, driving the required investments

even further. Finally, in order to assess the effect of

the approach, the results of the study can only be

expected after several years, in order to measure

the changes in the slope of the customer lifecycle.
The four factors mentioned above all add to the

difficulties of funding, designing and implementing

an optimal experimental study.

Further research is needed in two major direc-

tions. In the domain of marketing, the creation of

variables having still better predictive capabilities

for predicting the sign of the slope of the linear

lifecycle is an interesting research topic. Alterna-
tively, a replication of this study over different

customer bases in diverse industries and coun-

tries might deliver an insight into the stability of

the findings. Eventually, if resources would be
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available, testing and comparing different strate-
gies (e.g. the frameworks presented in Fig. 5) �in-
the-field� can determine the full potential of the

usage of customer spending evolutions for mar-

keting decision making. Considering the Bayesian

network classifiers, additional research is needed

to investigate the power of other structure learning

algorithms. Also the presence of hidden variables

in the Bayesian network forms an interesting topic
for further research.
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